Lightning Induced Outage Improvement Study for a 115kV Transmission Line

Prepared by
Jonathan Woodworth
ArresterWorks

Prepared for
Reliability Manager
Utilities Everywhere

January 7, 2011
ArresterWorks
Report No.
11-???
Lightning Induced Outage Improvement Study for a 115kV Transmission Line

Jonathan Woodworth ArresterWorks

Summary

Historically, the 63 mile Tuscaloosa-Kingston 115kV transmission line located in the on the Florida-Georgia border has experienced a 8.5 outages/year outage rate. The outages are all caused by lightning striking the system and causing back flashovers of the insulators on the H-frame towers Type AA and BB. Improvements in grounding have shown to be ineffective therefore the utility responsible for this line has commissioned this study to determine the potential improvement through the installation of line arresters and the cost of the same.

The analysis shows that the outage rate can be reduced to zero if arresters are installed on every tower on every phase at a cost of approximately $$$ USD per structure. As an alternative to that the outage rate can be improved dramatically by the strategic application of arresters per the following table.

<table>
<thead>
<tr>
<th>Tower Type</th>
<th>Arrester Location</th>
<th>Tower Numbers</th>
<th>New Outage Rate</th>
<th>Typical Ground Resistance Ohms</th>
<th>Cost per Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Outer Phases only</td>
<td>Every other tower</td>
<td>4.3</td>
<td>80</td>
<td>$$$</td>
</tr>
<tr>
<td>BB</td>
<td>Phase away from Shield wire</td>
<td>Every other tower</td>
<td>4.5</td>
<td>80</td>
<td>$$$</td>
</tr>
<tr>
<td>BB</td>
<td>Arresters on Outer Phases</td>
<td>Every other tower</td>
<td>4.5</td>
<td>80</td>
<td>$$$</td>
</tr>
<tr>
<td>BB</td>
<td>Phase away from Shield</td>
<td>Every tower</td>
<td>2.1</td>
<td>80</td>
<td>$$$</td>
</tr>
</tbody>
</table>

Overall Conclusions of the Study

End of Summary
Bases for the Analysis
All insulation will flashover or puncture in the presence of surges with amplitudes and durations above the limit of the design. This study was commissioned to determine the effectiveness of the strategic application of arresters along the 63 mile Tuscaloosa-Kingston 115kV transmission line located in the on the Florida-Georgia border. This analysis was done with extensive use of the IEEE excel based Flash program, and the well-known Transient Analysis Program (ATP). The main references for this study are IEEE 1313.2 [2], IEEE C62.22 [3] and Andrew Hileman’s book [1], ATPDraw Users Manual, and EMTP Rulebook.

Scope of Work
Tower Performance
- Determine the performance of each tower type
- Determine the effect of ground impedance on the tower performance
- Determine the effect of arresters on the tower performance

Arrester Selection and Installation
- Summarize the potential arrester model numbers that can be used.
- Offer recommendations on installation configurations and hardware necessary

Methods of Analysis
This analysis is completed in several steps.
1. Line and Tower Data Collected.
 a. Insulation dimensions
 b. Tower Dimensions
 c. Ground resistances
 d. Conductor Sizes
 e. Span distances
 f. Ground Flash Density of area
 g. Tower Material
 h. Down Conductor Characteristics
2. The Line and Tower are modeled in IEEE Flash where the flashover rate is determined
3. The Line and Tower are Modeled in ATPDraw and several runs are completed to determine agreement with Flash.
4. Model the Line and Tower are modeled with arresters installed at different locations.
 a. The effect of arresters under various locations and mounting configurations
 b. The effect of arrester rating
 c. The effect of lightning on the arrester
 i. Energy handling
5. From results of the study arrester model numbers from various suppliers are identified.
6. From results of study, mounting hardware is selected and recommended.
7. Budgetary figures are derived from results of study and supplier inquires.
8. Report is issued on all the above
9. The report is presented on line for Q&A of customer
Tower Characteristics

Figure 1 Tower Type BB

Figure 2 Tower Type AA
Analysis

IEEE Flash Analysis

Flash Results
The flashover rate of a Type BB Modified H-frame tower is 12.76/100 miles per year. Half of that is from shielding failure and half from back flash. This is 8.03 flashovers for the 63 mile line.

For the ATP results, 3.99 impulses will be directed to the unshielded conductor as well as the ### to the shield.

ATP Analysis
A seven pole segment of the line was analyzed to determine the energy handling capability requirements of arresters connected to the outside unprotected phase. The results show that a standard Class 1 arrester has adequate energy handling capability.
End of Main Body

See Summary at the Beginning of the report for the final Summary and Conclusions
References

